
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

TRACKING MULTIPLE TARGETS IN CLUTTERED
ENVIRONMENTS WITH THE PROBABILISTIC

MULTI-HYPOTHESIS TRACKING FILTER

by

Darin T. Dunham

March 1997

Thesis Advisor: Robert G. Hutchins

Approved for public release; distribution is unlimited.

"1

CXI

'Q QüiiliiX* LMi^^O£iM) S

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1997

REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE
TRACKING MULTIPLE TARGETS IN CLUTTERED ENVIRONMENTS WITH

THE PROBABILISTIC MULTI-HYPOTHESIS TRACKING FILTER

6. AUTHOR(S) Darin T. Dunham

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. ' SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Tracking multiple targets in a cluttered environment is extremely difficult. Traditional approaches generally use
simple techniques that combine gating with some form of nearest neighbor association to reduce the effects of clutter.
When clutter densities increase, these traditional algorithms fail to perform well. To counter this problem, the multi-
hypothesis tracking (MHT) algorithm was developed. This approach enumerates almost every conceivable combination of
measurements to determine the most likely tracks. This process quickly becomes very complex and requires vast amounts
of memory in order to store all of the possible tracks.

To avoid this complexity, more sophisticated single hypothesis data association techniques have been developed,
such as the probabilistic data association filter (PDAF). These algorithms have enjoyed some success, but do not take
advantage of any future data to help clarify ambiguous situations.

On the other hand, the probabilistic multi-hypothesis tracking (PMHT) algorithm, proposed by Streit and
Luginbuhl in 1995, attempts to use the best aspects of the MHT and the PDAF. In the PMHT algorithm, data is processed
in batches, thereby using information from before and after each measurement to determine the likelihood of each
measurement-to-track association. Furthermore, like the PDAF, it does not attempt to make hard assignments or
enumerate all possible combinations, but instead associates each measurement with each track based upon its probability of
association.

Actual performance and initialization of the PMHT algorithm in the presence of significant clutter has not been
adequately researched. This study focuses on the performance of the PMHT algorithm in dense clutter and the
initialization thereof. In addition, the effectiveness of measurement attribute data is analyzed, especially as it relates to
algorithm initialization. Further, it compares the performance of this algorithm to the nearest neighbor, MHT, and PDAF.

14. SUBJECT TERMS Probabilistic; Tracking; Clutter; Multiple Targets; Kaiman Filter 15. NUMBER OF
PAGES 87

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

TRACKING MULTIPLE TARGETS IN CLUTTERED ENVIRONMENTS WITH
THE PROBABILISTIC MULTI-HYPOTHESIS TRACKING FILTER

Darin T. Dunham
Captain, United States Marine Corps

B.S., Carnegie Mellon University, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1997

Author:

Approved by:

0tu^ / JLJL^
Darin T. Dunh

new ML/IA>
Robert G. Hutchins, Thesis Advisor

Herschel H. Loomis, Jr., ■Qfiairman
Department of Electrical and Computer Engineering

in
lüfXG QUi^LA'i'if ££k>:?^üTEB S

IV

ABSTRACT

Tracking multiple targets in a cluttered environment is extremely difficult.

Traditional approaches generally use simple techniques that combine gating with some

form of nearest neighbor association to reduce the effects of clutter. When clutter

densities increase, these traditional algorithms fail to perform well. To counter this

problem, the multi-hypothesis tracking (MHT) algorithm was developed. This approach

enumerates almost every conceivable combination of measurements to determine the

most likely tracks. This process quickly becomes very complex and requires vast

amounts of memory in order to store all of the possible tracks.

To avoid this complexity, more sophisticated single hypothesis data association

techniques have been developed, such as the probabilistic data association filter (PDAF).

These algorithms have enjoyed some success, but do not take advantage of any future

data to help clarify ambiguous situations.

On the other hand, the probabilistic multi-hypothesis tracking (PMHT) algorithm,

proposed by Streit and Luginbuhl in 1995, attempts to use the best aspects of the MHT

and the PDAF. In the PMHT algorithm, data is processed in batches, thereby using

information from before and after each measurement to determine the likelihood of each

measurement-to-track association. Furthermore, like the PDAF, it does not attempt to

make hard assignments or enumerate all possible combinations, but instead associates

each measurement with each track based upon its probability of association.

Actual performance and initialization of the PMHT algorithm in the presence of

significant clutter has not been adequately researched. This study focuses on the

performance of the PMHT algorithm in dense clutter and the initialization thereof. In

addition, the effectiveness of measurement attribute data is analyzed, especially as it

relates to algorithm initialization. Further, it compares the performance of this algorithm

to the nearest neighbor, MHT, and PDAF.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. A NEW APPROACH 2

C. THESIS OUTLINE 3

II. THEORETICAL BASIS OF THE PMHT ALGORITHM 5

A. TARGET MOTION MODEL 5

B. MEASUREMENT MODEL 6

C. COORDINATE CONVERSION 6

D. ITERATIONS 8

E. WEIGHTING THE MEASUREMENTS 8

F. KALMAN SMOOTHING 9

III. THE PMHT ALGORITHM IN EXPLICIT FORM 11

A. THE BASIC ALGORITHM 11

B. INITIAL MODIFICATIONS 15

C. FURTHER MODIFICATIONS 18

IV. TARGET STATE INITIALIZATION 23

A. GENERAL DISCUSSION 23

B. THE N-of-N INITIALIZATION ALGORITHM 23

Vll

V. RESULTS AND COMPARISONS 27

A. SIMULATIONS 27

B. OTHER ALGORITHMS 28

C. RESULTS 28

VI. CONCLUSIONS 51

A. SUMMARY 51

B. FURTHER RESEARCH 52

APPENDIX. MATLABCODE .Di

LIST OF REFERENCES 69

INITIAL DISTRIBUTION LIST 71

vm

LIST OF FIGURES

3.1. Basic PMHT 14

3.2. Modified PMHT 18

3.3. Improved PMHT 22

5.1. Straight Track with Clutter 27

5.2. Typical PMHT Result 29

5.3. Measurement and Estimate Errors (low clutter) 30

5.4. Comparison between EKS and Conventional Kaiman 32

5.5. Comparison between NN, PMHT, PDAF, and MHT (medium clutter) 33

5.6. Comparison between PMHT, PDAF, and MHT (high clutter) 34

5.7. Typical PMHT Results with a Turning Track 35

5.8. Measurement and Estimate Errors (low clutter) , 36

5.9. Measurement and Estimate Errors (medium clutter, 10° turn) 37

5.10. Comparison between PMHT, PDAF, and MHT (90° turn) 38

5.11. Measurement and Estimate Errors (high clutter, 10° turn) 39

5.12. Typical PMHT Results with Crossing Tracks 41

5.13. Errors for Crossing Tracks (low clutter) 42

5.14. Average Track Estimate (low clutter) 43

5.15. Errors for Crossing Tracks (medium clutter) 44

5.16. Average Track Estimate (medium clutter) 45

5.17. Errors for Crossing Tracks (high clutter) 46

5.18. Attribute Data Comparison (very high clutter) 47

5.19. Mean Distance Errors with Attribute Data and Varying N 48

IX

LIST OF ABBREVIATIONS AND SYMBOLS

Gt

i

M

MHT

n,
p

PDAF

PMHT

r

Rtm

s,m

T

t

Am = (X0m> • • • >XTm)

A = (XtU'"»XtM)

Xtm

wmtr

A = (Ztlv-jZtn,)

^n, = (7tlmv,%m)

"m,

P

2,m

o

Measurement matrix for target m at time t

Kaiman gain matrix at time t

Index of PMHT algorithm

Number of targets (target motion models)

Multi-hypothesis tracking

Number of measurements in the scan at time t

Target state covariance matrix for target m at time t

Probabilistic data association filter

Probabilistic multi-hypothesis tracking

Process covariance matrix for target m at time t

Index used for measurements within a scan

Noise covariance matrix for target m at time t

Indices used for target states

Batch length (number of scans processed together)

Index used for discrete time

Vector of all target state random variables for target m

Vector of all target state random variables at time t

State of target m at time t, where t=0,... ,T and m= 1,... ,M

Probability of measurement r originating from target m at time t

Scan measurement vector at time t

Measurement r in scan t

Measurement probability vector for target m

Target measurement probability vector for scan t

Probability of measurements in scan t originating from target m

Clutter weight constant

Weighting matrix for target m at time t

Transition matrix

XI

Xll

ACKNOWLEDGMENT

I would like to thank my thesis advisor, Gary Hutchins,

for all of his advice, guidance, and availability during

this endeavor.

Furthermore, I would especially like to thank my wife,

Martha, for her support and input. Finally, I dedicate this

thesis to my two children, Nathan and Amy.

Xlll

XIV

I. INTRODUCTION

A. BACKGROUND

Tracking multiple targets in a cluttered environment, such as is found in littoral

waters, is an extremely difficult task. This is due to the added noise which is caused by

the closeness of the ocean floor to the surface. Furthermore, in littoral waters, there are

quite often various man-made structures, which can cause the addition of false target

sonar returns. In this environment, targets typically operate at speeds between 2-10

knots. In order to maintain steerage control, submarines find it difficult to operate below

this minimum velocity, and above 10 knots, diesel submarines will produce an obvious

amount of noise.

Traditional approaches used to solve the cluttered environment tracking problem

have typically employed simple techniques to determine what is a true measurement from

a target and what is not. They accomplish this by a combination of gating (discarding

measurements) and some form of nearest neighbor association (picking the closest

measurement to the current target position estimate, where "closest" is defined by a

weighted distance). In the open ocean, where the water is deep, traditional approaches

perform well because the problem of dense clutter is not encountered. However, in

littoral waters, where clutter densities increase, these traditional algorithms fail to yield

reliable results. In order to solve the clutter problem, two algorithms were developed—

the multi-hypothesis tracking (MHT) algorithm and the probabilistic data association

filter (PDAF).

1. The Multi-Hypothesis Tracker (MHT)

The MHT [Ref. 5] enumerates almost all of the possible combinations of

measurement-to-track assignments. Then from all of these possibilities, the most likely is

selected as the best estimate of the track. The problem quickly becomes extremely

complex as the data combinations are growing exponentially as each new measurement

batch is received. This requires a huge amount of memory and computing power.

Furthermore, as the number of possibilities increase, some form of pruning must be done

in order to keep the number of hypotheses within limits.

2. The Probabilistic Data Association Filter (PDAF)

On the other hand, the PDAF [Ref. 4] does not make hard measurement-to-track

assignments, but rather weights each measurement based upon its likelihood of

association with a track. This algorithm has some advantages in its simplicity, especially

in computational and storage costs. However, it only gets one chance to weight the data

correctly. Therefore, this algorithm does not take advantage of any future data before

making a decision on the most likely true measurement.

B. A NEW APPROACH

In 1995, Streit and Luginbuhl of the Naval Undersea Warfare Center proposed a

new algorithm called the probabilistic multi-hypothesis tracking (PMHT) algorithm [Ref.

1]. Like the MHT, this algorithm processes data in batches, thereby giving it the

2

advantage of future data before decisions are made. However, the PMHT does not

attempt to enumerate all possible combinations, but rather weights the measurements

based on the likelihood of each measurement being the true measurement. Therefore, like

the PDAF, this new algorithm employs an empirical, Bayesian data association to score

the measurements in order to determine the likely true measurement centroid. This

technique can be significantly faster than the MHT, but will require more time to

compute than the PDAF. This research focuses on two primary areas of the PMHT that

have yet to be studied carefully, that is, the actual performance of the algorithm in the

presence of dense clutter and the initialization thereof.

Furthermore, this thesis also addresses the performance of the PMHT as compared

to the traditional tracking algorithms—the MHT and PDAF. In addition, measurement

attribute data is explored in conjunction with the PMHT algorithm.

C. THESIS OUTLINE

This thesis is divided into the following chapters: Chapter II describes the theory

and derivation behind the PMHT algorithm. Chapter III lays out the explicit algorithm as

it has been implemented in this study. Chapter IV covers the difficulty of initializing this

algorithm in the presence of clutter, and how the initialization was eventually

accomplished. Chapter V shows the results of this implementation of the PMHT

algorithm and compares these results to other tracking algorithms, i.e., the nearest

neighbor, PDAF, and MHT. Portions of these results were published and presented at the

Asilomar Conference on Signals, Systems, and Computers in November of 1996 [Ref. 2].

3

Finally. Chapter VI summarizes this study and offers suggestions about areas in which

further research misht be conducted.

II. THEORETICAL BASIS OF THE PMHT ALGORITHM

A. TARGET MOTION MODEL

In this research, measurements are obtained from a sensor in batches at a set time

interval. The PMHT algorithm takes all of the received measurements and computes an

optimal estimate for each target track. The targets are assumed to be independent with

linear Gaussian statistics of the following form:

x,+A,=<l>x,+w, (2.1)

where x is the state-space vector containing the x position, x velocity, y position, and y

velocity, respectively. O is the following discrete state-space matrix:

0 =

1 At 0 0"

0 1 0 0

0 0 1 At

0 0 0 1 _

(2.2)

Further, wt is white Gaussian noise with known covariance matrix Q, which is given by:

Q = q

'At3/ 3 At2/ 2

At212 At

0 0

0 0 At2 12

0 0

0 0

At3/ 3 At2 12

At

(2.3)

where At is the time in between scans, and q is a parameter which reflects the

maneuvering behavior of the target. This parameter is used to adjust the performance of

the Kaiman Filter. Usually for fairly straight tracks, q is set to a small but nonzero value

in order to prevent covariance collapse in the Kaiman algorithm.

B. MEASUREMENT MODEL

The measurement model in this research assumes that a sensor returns range and

bearing information which contains additive Gaussian noise. Therefore, each

measurement pair is of the following form:

z„ =
<t>r,

+ e, (2.4)

where the subscript r denotes the index for measurements within a scan (r = 1,...,«/), and

the subscript t specifies the discrete time index (/ = 0,.. .,7). Hence, there are nt total

measurements taken at time /, and there are T total scan times in the scenario. The error

vector is additive Gaussian noise with zero mean and covariance given by:

R
or,2 0

0 G]
(2.5)

For this research. ar = 100 meters and a, = 3 degrees was assumed. In this case, with the

coordinates in polar form, the measurement covariance matrix is the same for all

measurements at all time scans. However, if the measurements were in another

coordinate system (e.g., Cartesian) then each measurement would have its own

covariance matrix.

C. COORDINATE CONVERSION

The Kaiman Smoother requires a linear state equation and a linear measurement

equation. The bearing measurement in polar coordinates is nonlinear. Therefore, in order

to use these measurements in the classical Kaiman Smoother, it is necessary to convert

them into Cartesian coordinates. Lerro and Bar-Shalom have demonstrated that

converting range-bearing measurements into Cartesian space prior to implementing the

Kaiman algorithm is superior to utilizing the raw range-bearing measurements directly in

the Extended Kaiman algorithm [Ref. 3].

Lerro and Bar-Shalom recommend converting the measurements to Cartesian

coordinates using their "debiased" equations. These equations convert both the

measurement itself and its associated covariance matrix. The following are the debiased

measurement conversions:

z« =
n rr/cos(^)[l-(e^2-e^/2)]

rr,sin(^)[l-(e^-e^2/2)]_
(2.6)

Furthermore, the corresponding covariance matrix is given by:

All Rn
It _Rl2 R22

(2.7)

where,

Ru = rr
2e" ^ [cos2^., (cosh2cr^ - cosher2) + sin2 <j>n (sinh2crj - sinner2)]

+ a1
rQ
la'" [cosV,, (2cosh2crJ - coshcrj) + sin2 $„ (2sinh2crj - sinhcr2)]

-4CT;
i?12 = sin^cos^e"^ [al

r + # + al
T)(1 - ea*)]

.2„-2cr. R22 - r„ e" * [sin $rl (cosh2cr^ - cosher^) + cos (j)rl (sinh2cr^ - sinhcr^)]

.2 „"2a, + are * [sin $n (2cosh2cr^ - cosher^) + cos 0rl (2 sinh2cr^ - sinner^)]

With these equations, there is a different covariance matrix for each measurement at each

different time scan.

D. ITERATIONS

Each iteration of the PMHT algorithm begins with a set of track position estimates

and a set of measurement probabilities. Then the weights are computed and centroids

formed. These centroids are then used in the Kaiman Smoother to update the track

position estimates. With the new estimates, a new set of weights is computed. These

weights will be similar to the previous weights, but they will be different because of the

new estimates. After some iterations, the weights will converge. When convergence is

reached, the current estimate is theoretically the optimal estimate for a given track.

E. WEIGHTING THE MEASUREMENTS

In this research, two different models were used to assign weights to

measurements. The first is the target track model, which uses a normal distribution to

assign weights to measurements. The second is the clutter model, which uses a constant

value to assign weights to the measurements.

1. Track Model

Given the measurements and an initial estimate at each time scan, the PMHT uses

a normal distribution between the estimate and each measurement to determine the value

of the weight assigned to each measurement in a given scan. This weight specifies the

likelihood that this measurement belongs to a particular track model. From these weights

and measurements, a centroid is computed for each track model. The centroid is

calculated by simply multiplying each measurement by its associated weight and then

summing all of these together.

8

The weight calculated for each measurement is conditioned on the position of the

estimate and its covariance matrix. If a given measurement is far from the estimate, it

will get a low weight. On the other hand, if a measurement is near the estimate, it will

receive a high weight.

2. Clutter Model

Since uniform clutter is assumed for this research, the clutter weight is equal to a

constant, which can be adjusted. The clutter weight was initially determined by

calculating the area of interest for which measurements will be returned. The inverse of

this area was then used as the starting point for the clutter weight value. For optimal

performance, a clutter weight value an order of magnitude less than this value was used.

F. KALMAN SMOOTHING

The estimates at each scan are linked together by the Kaiman Smoother. The

centroids at each time scan are used as the "measurements" in the Kaiman Smoother.

This produces a new set of estimates for each track model. The Kaiman Smoother is used

so that all estimates are updated using all the available information from before and after

each time scan. This produces the best estimate possible at each time scan.

If the conventional Kaiman is used, then each measurement will have its own

corresponding covariance matrix. This covariance matrix is used both in the Kaiman

Smoothing step, as well as in the weighting step. This not only complicates the

computations and requires more memory storage, but also causes both the position

estimate and its associated covariance matrix to have to converge in the iteration process.

On the other hand, if the Extended Kaiman is used, the same covariance matrix is

used for all measurements at all time increments not only in computing the weights, but

also in the smoothing process. This allows simplification of the computations, and

during the iteration process, only the position estimate is being refined and convergence

is more easily achieved.

10

III. THE PMHT ALGORITHM IN EXPLICIT FORM

A. THE BASIC ALGORITHM

This algorithm is taken from Streit and Luginbuhl [Ref. 1] using the linear

Gaussian case. In section B, I will discuss the modifications which were made to the

original algorithm, initially. Then in section C, I will cover the modifications, which

further improved the performance of the algorithm.

1. Initialization

Measurement probabilities, n(0) = {^} must be assigned so that^ > 0. It is

not critical what values are assigned to these measurement probabilities because in the

first iteration they will be recalculated. Moreover, they do not have an adverse effect

before they are recomputed. The^ values specify the estimated probability that a

measurement at scan t is assigned to target model m after i iterations of the PMHT

algorithm.

An initial target state (xfl ,x\°2,...,x^) for each time increment and each of the

M target models must be assigned. My experience has shown that these initial estimates

must be fairly accurate to ensure that the algorithm performs satisfactorily as clutter

densities increase.

In this paper, m specifies the target model {m - l,...,M); t specifies the discrete

time index (/ = 0,...,7); r specifies the index for measurements within a scan (r = l,...,«t);

and the superscript i specifies the iteration index (i = 0,1,...).

11

2. Computation of the Weights

For every target and measurement combination at each scan, a weight is

computed. The value of the likelihood function (assuming normal distribution) evaluated

at the error between the current estimated position and each measurement is used for the

weight:

,.'('+|)
exnf-1/'01^"1 7U))

2n>/det(Z,J
(3.1)

where.

w, ('-I)
wTl)

.v=]

?('•) I«) ('■) z,w = z - 7l' =7 - C X

(3.2)

(3.3)

is the error between the current estimate and a measurement. Further, Z is the weighting

matrix defined as:

^,m=C,mP,„,C^+R/m (3.4)

Here P,w is the covariance matrix associated with the target state estimate, and C,m is the

measurement matrix defined as:

C =
10 0 0

0 0 10
(3.5)

for the standard Kaiman algorithm.

12

3. Calculation of the Measurement Centroids

First, the mean measurement weight for each target model m at time t is defined

as:

«,
w(l+1)=-LtwlM) (3.6) wml «, , ,vmlr v '

Next, the measurement centroid is computed as:

2(01) = \ £ W('+Dz (3.7)
"1 vvlm

This measurement centroid will be used in the Kaiman Smoothing step below.

4. Target Measurement Probabilities Update

The next step before the Kaiman Smoother is to update the target measurement

probabilites. This is computed as:

^('+') = w(,:+1)^(;) (3.8)
"7»i ml tm K '

5. Target State Sequences Update

The target state sequences are updated via the Kaiman Smoother using the

measurement centroids as the inputs. First, the intermediate variables of the forward

recursion are initialized as:

y0,o=^ (3.9)

Po|o=Po„, (3-10)

Here with these dummy variables, the model m and iteration index / have been

suppressed for notational simplicity. The forward recursion is defined for t = 0,1,...,7-1

as:

13

P,+1!, =OP,„.,0T+Q (3.11)

^t\ ~ ni + \ni*\jn*t + \\<Ci + \.m "/ + l7r/!l.n,C, + lmP, + 1!,C, + lm +R, + 1„

y,+,:,M =<&$,, +G,+1[z,(;;.'i, -c,.,.m<i>yl(,]

Then the updated target state estimate for model m at time / is:

(3.12)

(3.13)

(3.14)

I'm J IT (3.15)

and the updated target state estimates for / = T-1,..., 1,0 are computed via the backward

recursion as:

^,, (3.16) x(,H) = v +P d)TP"'

The equations in this subsection make up a bank of M Kaiman Smoothers which can be

run in parallel, although these filters are not independent because they are linked by the

weights. In these equations, O is the same as was defined in (Eqn. 2.2).

Therefore, a block diagram of the basic algorithm is shown below in Figure 3.1.

The convergence block will be discussed in the next section.

iterate

Kaiman
Smoother

Figure 3.1. Basic PMHT

14

B. INITIAL MODIFICATIONS

Several modifications and additions are necessary in order for the PMHT

algorithm to begin working.

1. Clutter Weight Model

First, there needs to be a model for clutter weights. Since uniform clutter is

assumed for this problem, I used a clutter weight equal to a constant, which could be

adjusted. Therefore,

"Z+1)=P (3-17)

was used for the clutter model and (Eqn. 3.1) was used for target track models.

2. Convergence Criteria

The basic algorithm does not specifically state how convergence is to be

determined. In this research, convergence was measured by the rvalues. It would also

be possible to test convergence through the weights. However, both approaches yield

similar results and the rvalues are quicker to sum and compare. Therefore, initially

convergence was achieved when

Zlk?-^ <Kc>0 (3.18)
»=0»i=l

The parameter Kc is adjusted for optimal performance. If this number is set too

high, then the algorithm will stop before it has fully converged to its best solution. On

the other hand, if this number is set too low, then the algorithm might never be able to

meet this criteria. Initially Kc was set to 10"4. Iterations are allowed to continue until

15

convergence is reached or the maximum limit is exceeded (100 iterations). I will refer to

this convergence parameter as the stopping criteria in the sections below.

3. Measurement Covariance

Using the basic algorithm in Cartesian Coordinates requires that each

measurement have its own associated covariance matrix. For the weighting equation

(Eqn. 3.1). it is possible to use each measurement's associated covariance matrix.

However, during the Kaiman Smoothing step, a covariance matrix is needed for each

track at each time scan. Furthermore, since the measurement centroids are mixtures of

the received measurements, there is not just one matrix for each track model at each scan.

The following variations were investigated during this research:

a. Weighted Covariance

For this calculation, a weighted covariance matrix is obtained by a similar

process as is used to obtain the measurement centroids.

ft""l,^i«' (319)
/ mir

b. Closest Measurement

The covariance matrix associated with the measurement which is closest to

the current estimate is used.

R!:'=R,r (3.20)

c. Covariance of the Estimate

Here, the covariance matrix is computed from the current estimated

position by using the debiased equations (Eqn. 2.7).

16

Of these variations, the estimated covariance (Eqn. 3.21) has shown the

most robustness and has provided the best overall results. Furthermore, it has been found

that using this estimated covariance matrix not only in the Kaiman Smoother (Eqn. 3.12),

but also in the computation of the weights (Eqn. 3.4), provided even better results.

4. Distant Clutter

It was found that if a measurement point was too far from the estimated position

then the weight calculated was extremely small, and numerical instabilities would be

encountered. Therefore, on a suggestion from Dr. Streit, any measurements beyond a

Chi-squared cut-off value of 0.995 from the estimated track position have their weight set

to a low constant value of 10"20, rather than using the actual weight from (Eqn. 3.1).

5. Five Scan Batches

The initialization process (to be discussed in Chapter IV) produces the initial

estimates for the first five time scans. The PMHT algorithm is run on these five time

scans until convergence is reached. Then the next five time scans are predicted, and the

algorithm runs over the now 10 time scans, and so forth. This not only provides a more

realistic approach to what might actually be implemented, but also allows the algorithm

to only have to sort out five new points at a time.

6. Speed Limit

Since the targets of concern in this research have speeds of 2-10 knots, a 10 knot

maximum speed is imposed when predicting ahead. The actual target estimates produced

17

by the PMHT algorithm are not limited and can converge to an estimate with any

velocity.

Therefore, a block diagram with these modifications is shown in Figure 3.2.

iterate

Initial
iX0 and n; *

AL/
Compute
weights
with min.
value

->

Form
centroids

■*

Kaiman
Smoother using
est. covariance

Predict next five
points with a 10 knot
maximum speed

f

Figure 3.2. Modified PMHT

C. FURTHER MODIFICATIONS

The above modifications were sufficient in order for the PMHT algorithm to work

well. With these modifications, the PMHT algorithm was able to perform better than the

PDAF at clutter densities up to 3.33xl0"3 clutter points per square kilometer. This value

for the clutter density appears to be low. However, the standard deviation for the range is

+/-100 meters, and the standard deviation for the bearing is +/-3 degrees. Therefore, with

these values in the measurement covariance matrix, this clutter density is fairly

significant.

18

On the other hand, in order to increase the performance of the algorithm further,

the following modifications were also implemented and found to be effective, especially

for the higher clutter densities.

1. Clutter Weight Model Inflation

Adjusting the clutter weight model parameter r after the algorithm has sorted out

the first 10 points has proven beneficial. That is, for the first 10 points, p is set to a value

of 10"12, and then it is increased to a value of 10"10 for the rest of the batches.

2. Extended Kaiman

The numerical complications involved with the measurement covariance matrix

led to trying the Extended Kaiman algorithm. As has been discussed, the classical

Kaiman requires a different covariance matrix for each different point in the Cartesian

Coordinates. On the other hand, if the Extended Kaiman is used, one measurement

covariance matrix is used for all models at all time scans. Using this approach has shown

some significant advantages which will be discussed in greater detail in Chapter V.

Therefore, the changes necessary to implement the Extended Kaiman smoother

are the following:

a. Coordinate Conversion

First, the innovations equation (Eqn. 3.3) must incorporate the coordinate

conversion.

where,

19

gOO =
V^7
atan 0)

(3.23)

The Measurement Matrix

The Kaiman measurement matrix (Eqn. 3.5) will no longer be a constant

matrix, but will have to be re-computed each time.

■<(') _

'%(*%)]■
0^0

0 4 0
(3.24)

The same modifications are also necessary for the smoothing step.

Therefore, (Eqns. 3.11-3.16) will be changed accordingly. Another effect of using the

Extended Kaiman is that the algorithm converges more quickly and easily than before.

Therefore, the stopping criteria, Kc, can be lowered, producing relatively the same

number of iterations, while allowing a tighter convergence parameter. For the Extended

Kaiman algorithm, Kc was set to 10'8.

3. Stricter Speed Limit

As different geometries were simulated, I found that the original speed limit still

allowed targets to "run away," i.e., have a velocity estimate which was too fast.

Therefore, a modification to the limit on the velocity of the predicted track estimate was

necessary.

The stricter speed limit is implemented by first selecting the middle time scan

estimate as the baseline. If this estimate has a speed in excess of 10 knots, then the

velocity of the baseline is reduced to reflect a speed of 10 knots. Then the state estimates

at both past and future times are generated from the adjusted baseline state with its new

20

refined velocity. These estimates are then used in the next batch of processing. Even

with this stricter speed limit, the algorithm is still allowed to converge to a final track

estimate with any velocity.

4. Attribute Data

The use of measurement attribute data was explored and added to the algorithm.

This method assumes that a measure of target amplitude was available in addition to the

range-bearing measurement. The measured amplitude is drawn from a Rayleigh

distribution with specified mean, which has the form:

f(a) = (a/a2)exp(-a2 /2a2), a>0 (3.25)

The mean for this distribution is a^n 12 . For this research, targets and clutter are

assigned different means. The clutter model is given a mean with a=l, and the target

models have means with a>\. This data is included by multiplying the weights found in

(Eqns. 3.1 & 3.17) by the Rayleigh distribution. Therefore, (Eqns. 3.1 & 3.17) become

vv;r=f(«) p 2i;:r'
m: ow 2^Vdet(S,m)

wl+1) = mp (3-27)

respectively. This modification was only used in the simulations that are indicated in

Chapter V.

A block diagram with all of the modifications, except the attribute data, is shown

in Figure 3.3.

21

iterate

\/_
Compute
weights
with min.
values

^

Form
centroids

■*

Extended
Kaiman
Smoother

Produce next five points
and refine previous points
with 10 knot limit

(r

Figure 3.3. Improved PMHT

This concludes the layout of the PMHT algorithm, which is utilized in this

research. In the next chapter, I will discuss the initialization routine that is used for this

algorithm.

22

IV. TARGET STATE INITIALIZATION

A. GENERAL DISCUSSION

The initialization algorithm used in this research is of the N-of-N variety. That is,

for the first N time scans, there must be N measurement points which meet the gating

criteria. The PMHT algorithm is very sensitive to the initial estimates it is given. For

small values of N, the initial heading can be extremely inaccurate, and then the algorithm

is less likely to converge to the true track. Therefore, I have found that values of N > 5

are necessary for the PMHT algorithm to perform reliably.

B. THE N-of-N INITIALIZATION ALGORITHM

There are two steps for this process when N > 3. The first step is a gating

equation which eliminates all points which are not likely to be associated as a track.

Then once a set of JV points has been designated as a new track, a least squares algorithm

is used to fit the optimal track to these JV points.

1. Gating

As has been stated before, this research assumes that targets have a speed between

2 and 10 knots. If the target velocity vector is known and two successive measurements

(z, and z,+1) are obtained for the target, then the quantity

X2 = (z,+1 -z,)T[R,+1 +R,r,(z,+1 -z,) (4.1)

23

has a non-central Chi-squared distribution, where z, and R, are the measured track

position and measurement covariance matrix at time t. It was empirically demonstrated

that for the target speeds, tracking ranges, and measurement errors used in this research, a

cut-off of x2 < 50 kept all target associations. This cut-off produces an effective gate for

2-of-2 association of approximately 75 square kilometers. A 3-of-3 case relies on a

match (using the 2-of-2 algorithm) for the first and second measurements and the second

and third measurements. Then a cut-off value for track formation was applied with

■/; < 20. This gives an association probability for measurements derived from a real

track of 0.9972. Higher order associations project the subsequent result into the future to

determine likely measurements for the new association. At each projection for the next

higher association, a match is performed and then a JC rejection.

2. Least Squares Fit

This initialization algorithm uses a least squares fit assuming a constant velocity

target during the initialization period. Therefore, for the 3-of-3 case, the first three

measurements are given by:

z2„, = Cx2„, + e2r = C[<DxlB1 + wlBI] + e2r (4.2)

Z3m=Cx3BI+e3r=C[<D(<Dxlm+wlBI) + w2)II] + e3r

Since a straight, constant velocity target is assumed during the initialization, the process

errors are set to zero (i.e., w,„,=0 for every /). Therefore,

24

r- —i r- —]

Zl»l «Ir

Z2m = Fx + e2r

_Z3m _ 6x1 -e3r.

(4.3)

where,

F =
H
HO
H<D<D

where the covariance associated with the error vector is

'2r

"ir .

[elr e2r e3r]

R)r 0 0

0 R2r 0
0 0 R 3r.

= 2,

Therefore, the least squares estimate of xlm is given by:

^[F^-'FJVS

u\m

u2m

-T,m.

and

*3„ = ®*2„, = W*lm

(4.4)

(4.5)

(4.6)

(4.7)

since this gives the estimates for the position. For the associated state estimate

covariance matrices, the following equations are used:

Plm = [F^FfV^S^Vsä)7 (4.8)

and

P3m = ®?2m®T + Q = <K<DPlwOT + Q)$>
T
 + Q (4-9)

25

From this 3-of-3 case, it is straightforward to expand this in order to apply this process to

the 5-of-5 case. These estimates and their associated covariance matrices are then used in

the first batch of the PMHT algorithm.

26

V. RESULTS AND COMPARISONS

A. SIMULATIONS

In this research, all of the comparisons are based on simulated data. Simulations

were run for 30 time scans with the time between scans equal to 4 minutes. The 30

range-bearing target measurements are generated using additive Gaussian noise, where

the range standard deviation is 100 meters and the bearing standard deviation is 3

degrees. An example of a simulated target run is shown in Figure 5.1.

x104

2.8 3.2 3.4 3.6 3.8
x (meters)

4.2 4.4

x104

Figure 5.1. Straight Track with Clutter

27

The solid line is the true track, and the "*" are the noisy measurements. The

actual target velocity is 5 knots in all scenarios. The sensor is located at (0,0), so the

target is moving predominantly in the cross range dimension at a range greater than 40

kilometers.

This example also depicts clutter points as circles. Clutter was generated in a

uniform random fashion throughout the area of interest. For this example the clutter

density is 1.67x10"2 clutter points per square kilometer, or in other words, there are five

clutter points for each time scan. Clutter densities in this study were varied from

3.33xl0'3 to 6.67xl0"2 clutter points per square kilometer.

B. OTHER ALGORITHMS

The MHT and PDAF algorithms were used as a benchmark to see how well the

PMHT is performing. As was mentioned in Chapter I, both of these are established

algorithms that are currently being used in tracking applications. The results from these

algorithms were produced using the exact same scenarios as were used for the PMHT.

The MHT and PDAF algorithms used are widely discussed in several different texts (e.g.

Bar-Shalom and Li [Ref. 4], Blackman [Ref. 5]).

C. RESULTS

Three different target motion geometries were tested during this research. First,

there is the basic straight line track as is depicted in Figure 5.1. Second, two crossing

28

tracks are used moving in straight lines with constant velocity. The third geometry is a

track which makes a turn halfway through the simulation.

The PMHT algorithm was first tested in each of the three geometries with a low

clutter density (3.33x10"3 clutter points per square kilometer). Then it was confirmed

with higher clutter densities and compared to the competing algorithms.

1. Straight Line Target Motion

Figure 5.2 displays a typical converged result produced by the PMHT algorithm.

3 2
x104

3

i i i i i

2.8 *&*.

2.6 ^^jtfv

1»
■g 2.4
E "®M1

2.2 *km

2 JGL.

1.8 ^8.

1.6 .. J 1 1 1 1——SK

3.2 3.4 3.6
x (meters)

3.8 4.2

x104

Figure 5.2. Typical PMHT Result

29

On this single, straight line track, the circles are the actual target positions at each time

increment, and the "*" symbols are the smoothed, converged estimates. The clutter

density for this simulation is 3.33x10"3 clutter points per square kilometer.

a. Low Clutter Density

In order to quantify the results, mean distance errors were computed for

the final target estimates at each time scan. The means were taken from 500 simulation

runs. Figure 5.3 shows these mean distance errors for a straight line track in a clutter

density of 3.33x10"3 clutter points per square kilometer.

2000

1800

i , , , ,

r i \ f

1600 •

1400
■

di
st

an
ce

 (
m

)

o

 o

O

 O

■

800 •

600

400
^^^_^^

200 1 1— i i .

0 20 40 60 80
time (min)

100 120

Figure 5.3. Measurement and Estimate Errors (low clutter)

30

The lowest dotted line curve on the figure is the result of running the

Kaiman Smoother using the actual target measurements (i.e., no clutter) and computing

the mean distance errors over 1000 simulation runs. Therefore, this curve represents an

approximate theoretical minimum for algorithm performance in the absence of clutter.

The highest curve on the figure (the dotted line) is the average, noisy measurement error

computed over 1000 runs. Clearly, an algorithm should be below this line to be

considered as a viable option. The other line on the figure (the solid line) is the mean

estimate error, which was produced by the algorithm. This is the average estimate error

for 500 simulation runs at a clutter density of 3.33xl0"3 clutter points per square

kilometer.

In this simulation, the algorithm happened to produce estimate errors

which have a better mean than the Kaiman Smoother without clutter. This can be true

because of randomness, but in general will not happen. However, it does show that the

PMHT algorithm is performing extremely well in low clutter, as would be expected.

b. Medium Clutter Density

Figure 5.4 shows the results using the PMHT algorithm in a medium

clutter density. The medium clutter density has five clutter points and a noisy

measurement in the search area at each time scan. The clutter density is 1.67x10"2 clutter

points per square kilometer. The solid line in Figure 5.4 displays the results from using

the Extended Kaiman Smoother (EKS) in the algorithm. The broken line shows the

results of using the conventional Kaiman Smoother in Cartesian Coordinates, using the

debiased equations. As can be seen, the Extended Kaiman Smoother performed better.

31

Furthermore, the EKS performed the 500 simulations in only 204 minutes, whereas, the

conventional Kaiman algorithm took 280 minutes. Therefore, from these results, I have

determined for this application that it is better to use the EKS as opposed to the

conventional Kaiman with the debiased equations. From here on, I will only show results

from the EKS, but at other clutter densities, the results are similar between the

conventional Kaiman and the EKS, as is shown here.

2000

1800

1600

1400

£ 1200
O

3 1000

800

600

400

200
20 40 60 80

time (min)
100 120

Figure 5.4. Comparison between EKS and Conventional Kaiman

Figure 5.5 shows the comparison between the nearest neighbor (NN),

PMHT. MHT, and PDAF. On this figure, there are four different lines—one for each of

32

the different algorithms. The solid line represents the PMHT; the solid line with circles is

the nearest neighbor; the broken line is the MHT; and the dash-dot line is the PDAF. The

important estimate error to compare is at the last time scan. This is the time that is

current and is of importance. The PMHT will almost always have better errors for earlier

time scans because of the smoothing process. For this clutter density, the PMHT is

performing slightly better than the MHT and considerably better than the PDAF and the

nearest neighbor. This is especially promising given the fact that the PMHT is less

complicated and easier to compute than the MHT. Since the nearest neighbor algorithm

is clearly not a viable option, it is not included on subsequent plots.

CD o a
CO -«—»

2500

2000

1500.

1000

500

20 40 60 80
time (min)

100

Figure 5.5. Comparison between NN, PMHT, PDAF, and MHT (medium clutter)

33

c. High Clutter Density

For a high density clutter environment, a clutter density of 3.33x10"2

clutter points per square kilometer was used. This meant that there were 10 clutter points

and one noisy measurement in the search area per time scan. The results from this

simulation are shown in Figure 5.6.

3000

2500

2000 1- / *
/ }

\

20 40 60
time (min)

80 100 120

Figure 5.6. Comparison between PMHT, PDAF, and MHT (high clutter)

These results show that the PMHT is performing better than the PDAF.

but worse than the MHT for this clutter density. Therefore at this point, there is a cost

trade-off versus the algorithm performance. The MHT performs the best, but it also is the

34

most expensive in terms of computations. On the other hand, the PDAF is producing the

worst results, but it is the cheapest and fastest to calculate.

2. Turning Tracks

For this scenario, the target moved in a straight line with constant speed for the

first 60 minutes. At that point, the target made a 10 degree turn and then continued in a

straight line for the remaining time. This target motion and a typical converged result

produced by the PMHT algorithm are displayed in Figure 5.7.

3.2

3

x104

 1— — -I i i

2.8 - ^**

2.6
^S***Ä

? 2.4 ^SB

£ 2.2 **L. >» «^

2 ^V
1.8 ^V
1.6

14 i i i i

3.2 3.4 3.6
x (meters)

3.8 4

x104

Figure 5.7. Typical PMHT Results with a Turning Track

35

Again, the circles are the actual target positions at each time increment, and the

'•*** symbols are the smoothed, converged estimates. The clutter density for this

simulation is 3.33x10"3 clutter points per square kilometer. This result shows that the

algorithm is not handling the turn quite as well as the straight line track; however, it is

tracking nonetheless. For this 10 degree turn, the q factor was set to a value of one.

a. Low Clutter Density

Figure 5.8 displays the mean errors for a turning track for 500 simulation

runs. The solid line represents the estimate errors at each time scan.

2000 , , 1 , ,

/ \ t

1800

1600 -

1400 -

& 1200
0> o
1 1000

■

800
■

600
^>^ ^^ -

400 ^^^--^—^^^^^

200 1 1 1 i i

20 40 60 80
time (min)

100 120

Figure 5.8. Measurement and Estimate Errors (low clutter)

36

The clutter density for this simulation is 3.33x10"3 clutter points per square

kilometer. While the errors for this scenario are higher than for the straight track, they

are still well below the measurement errors.

b. Medium Clutter Density

Figure 5.9 shows the results of the PMHT algorithm on a turning track in a

clutter density of 1.67x10"2 clutter points per square kilometer. These results show that

the algorithm is still performing well even with the target making a turn in the presence

of a medium clutter density. This further justifies the use of the q factor as a small, but

positive value. For this scenario, q was set to a value of 10.

2000

1800

1600

1400

«& 1200
Ü

I 1000
T3

800

600

400

200
0

/ «* - - ■

20

---N I

40 60
time (min)

80 100 120

Figure 5.9. Measurement and Estimate Errors (medium clutter, 10° turn)

37

Figure 5.10 shows the results of the three algorithms estimating a turning

track with a 90 degree turn instead of a 10 degree turn. Again, the solid line represents

the PMHT; the broken line is the MHT; and the dash-dot line is the PDAF. The clutter

density is still 1.67x10"2 clutter points per square kilometer.

8000

7000

6000

5000

0
Ü 4000

3000

2000

1000

20 40 60 80
time (min)

100 120

Figure 5.10. Comparison between PMHT, PDAF, and MHT (90° turn)

Here the q factor was set to a value of 300 in an effort to try and get the

PMHT algorithm to track through the turn. However, with a turn this radical, the PMHT

and PDAF algorithms were unable to maintain the target. The MHT results show that the

target was lost at the turn, but was able to be reacquired after the turn. The MHT

38

algorithm has reacquisition logic inherent in the algorithm itself, while the other two

algorithms do not have this process inherent to the basic tracking filter. Therefore, this

result leads to the conclusion that the use of the PMHT will require that some sort of

target re-initialization be implemented in a fielded system. A procedure for linking the

new track with the old would also be required.

c. High Clutter Density

Figure 5.11 shows the results of the PMHT tracking a target through a 10

degree turn in a clutter density of 3.33x10"2 clutter points per square kilometer.

2000

60
time (min)

120

Figure 5.11. Measurement and Estimate Errors (high clutter, 10° turn)

39

These results confirm what was seen at the medium clutter density—

namely that the PMHT algorithm is able to robustly follow a track as it makes small

maneuvers. This justifies further using the small, but non-zero q factor value instead of

setting it to zero, which would be the equivalent of using a least squares fit instead of a

Kaiman filter or smoother.

3. Crossing Tracks

In this scenario, there are two targets in the simulation. Target one executes the

same track that was used in the straight track from before. Target two executes a track

which starts in the bottom left-hand corner of the figure and runs toward the upper right-

hand corner. Therefore, this new track is predominantly in the cross bearing direction.

These tracks along with typical converged results from the PMHT algorithm are shown in

Figure 5.12.

Again, the actual target positions are the circles, and the "*" symbols are the

smoothed, converged estimates. The clutter density for this simulation is 3.33xlO"3

clutter points per square kilometer. Initially, there were some problems with the

algorithm tracking the different trajectories, but since the improved limit on velocity was

implemented, this has not been a drawback. This typical result shows the effect of the

greater uncertainty in the bearing dimension. Track one, which is predominantly moving

in the cross-range direction, has a greater uncertainty along its axis of travel. On the

other hand, track two, which is predominantly moving in the cross-bearing direction, has

a greater uncertainty perpendicular to its axis of travel.

40

x104

•* 0

3

 1— | | 1 Nt£

2.8

2.6 ^ V^° £ 2.4 Vo° a)
0

£ 2.2 5(6 ^H^
>»

2 ,-J* sfc^

1.8

o3*
3&B

1.6

14 1 1 1 1 1

3.2 3.4 3.6 3.8 4
x (meters)

Figure 5.12. Typical PMHT Results with Crossing Tracks

4.2

x104

a. Low Clutter Density

Figure 5.13 displays the results from the crossing track scenario with a low

clutter density of 3.33x10"3 clutter points per square kilometer. The solid line shows the

mean errors from track one, and the broken line is from track two. Again, the lowest

dotted line represents the theoretical minimum, which was produced by running the

Kaiman smoother with just the noisy measurements. The highest line is the average

measurement error over 1000 simulations. These results are still below the measurement

error, but significantly higher than the single track in a low clutter density.

41

2000 ■ i ■ - 1 1 1

1800

1600 "

1400

st
an

ce
 (

m
)

O

 O

o

 o

 •

/
/

/

■D v. ' ^>^

800
<^U ^>^^

600 >-~/^>--^_ __^^^^

400 :"-:" ...--■-".

200 • ' 1 L 1 I

20 40 60
time (min)

80 100 120

Figure 5.13. Errors for Crossing Tracks (low clutter)

One reason for this is the effect that each track has on the other one. The

clutter has an equal probability of affecting the estimate to one side or the other, and. in

general clutter will tend to have little bias effect on the track estimate. On the other

hand, the measurements from the other track will tend to pull the estimate toward these

measurements, causing a bias to one side. Since, in this low clutter density the clutter has

minimal effect, this bias effect of the other track is clearly evident. Figure 5.14 shows

this bias effect. This figure is the average track estimate, which is produced by the

aleorithm over the 500 runs.

42

x104

3.2

3 vv

I 1 l i i

^ >^
^s.

2.8

2.6 " vv

52 2.4 sv «v^ .
a) *S

0 <^

£ 2.2 _
>.

2 AT

1.8 -

1.6

1.4

-*

' I 1 1 1

-

3.2 3.4 3.6
x (meters)

3.8 4.2

x104

Figure 5.14. Average Track Estimate (low clutter)

The true target tracks are shown as the solid lines, and the estimate

average is displayed as the dotted lines. Track one is pulled downward, and track two is

pulled up towards track one. In the next subsection, I will show how more clutter will

dampen out this bias effect.

b. Medium Clutter Density

Figure 5.15 shows the results from the crossing track scenario in a medium

clutter density of 1.67x10"2 clutter points per square kilometer. Once again, the solid line

represents the mean errors from track one, and the broken line is from track two.

43

2000

1800

1600

1400

~ 1200
O

£ 1000
T3

800

600

400

200

• s / **

20 40 60
time (min)

80 100 120

Figure 5.15. Errors for Crossing Tracks (medium clutter)

Even though the clutter density is five times greater, these results are

significantly better than the low clutter density case. This is due to the higher clutter

density dampening out the bias caused by the two tracks. These results compare very

closely to those obtained for the single straight track in a medium clutter density.

Figure 5.16 shows the average track estimate for this scenario as was

depicted in Figure 5.14 for the low clutter density. Again, the true target tracks are

shown as the solid lines, and the estimate averages are displayed as the dotted lines.

Indeed, the separate tracks show very little bias toward the other track in the simulation.

44

3 2
x104

3

- -i i

/£

2.8 X. -

2.6 ^v -

CD
^5 2.4
E,

^ -

2.2 yf -

2 -

1.8 fr -

1.6 '/ l 1

3.2 3.4 3.6
x (meters)

3.8 4.2

x104

Figure 5.16. Average Track Estimate (medium clutter)

c. High Clutter Density

Figure 5.17 shows the results from the crossing track scenario in a high

clutter density. Again, the solid line displays the mean error from track one, and the

broken line represents the mean errors from track two. The clutter density for this

scenario is 3.33x10"2 clutter points per square kilometer. For this simulation, the errors

are starting to get up close to the measurement errors, and for clutter densities higher than

this, the errors begin to exceed the measurement errors.

45

2000

1800

1600

1400

400

200

■- - •. /

/ ^ t

20 40 60
time (min)

80 100 120

Figure 5.17. Errors for Crossing Tracks (high clutter)

Another observation from these results is the fact that track one's estimate

is higher than that of track two. For the higher clutter densities, this was found to be the

norm. The reason track one produces the higher estimate errors is due to the target

motion being predominantly in the cross-range direction. Therefore, this is the reason

track one was used for the majority of the simulations.

4. Attribute Data

The use of attribute data was researched to determine what level amplitude of

target data, in relation to the clutter data amplitude, was necessary in order to improve the

46

performance of the PMHT algorithm. For this simulation, a very high clutter density of

6.67xl0"2 clutter points per square kilometer was used. Figure 5.18 shows the results of

the PMHT algorithm in this clutter density with and without attribute data.

 1 1 1 r— i

/
/

2000 /
/

' ''\ ''

/

£* 1500
s ./

<D s / / O N „ / r ^ x S m V / ^"^
to

T3 1000 — -*• ' -^

500

0 ' i ' i — 1

20 40 60
time (min)

80 100

Figure 5.18. Attribute Data Comparison (very high clutter)

120

The solid line represents the algorithm with the use of attribute data, and the

broken line is the algorithm without it. For this simulation an attribute value of a = V10

was necessary in order to get a noticeable improvement from the algorithm. As was

described in Chapter III, this means that this value of a was used for the target

measurements, and a value of a = 1 was used for the clutter measurements. For values

47

less than a = vTÖ , no clear advantage could be seen. The fact that a 1 OdB power

advantage is needed for the target data in order to show an improvement is not very

encouraging at this point. Given the findings of this research, a large amplitude

separation would be necessary to produce any sort of real advantage using the attribute

data.

Attribute data was also utilized to see if it could lower the requirements for

initialization. Figure 5.19 shows the effect of varying the initialization constant N, which

is in A'-of-.Y. A 1 OdB power ratio is used throughout these simulations.

1600

20 40 60
time (min)

80 100 120

Figure 5.19. Mean Distance Errors with Attribute Data and Varying N

48

The solid line is the standard PMHT with no attribute data and N=5. The dotted

line is the algorithm with attribute data and N=3, and the dash-dot line represents attribute

data with N=5. The clutter density for these simulations is a high clutter density of

3.33x10"2 clutter points per square kilometer. Here the attribute data with JV=3 is not as

good as no attribute processing and N=5. However, attribute data with iV=5 shows

superior results. Therefore, at higher clutter levels, it is not possible to reduce Wand

make up the difference with lOdB of attribute information.

49

50

VI. CONCLUSIONS

A. SUMMARY

This research has explored the possible implementation and initialization of the

PMHT algorithm. It has solved and improved many of the aspects of running the

algorithm. This includes the development of an initialization routine, a clutter weight, a

cut-off for very small value weights, processing in five-scan batches, a maximum

allowable velocity of the initial state estimate, clutter weight model inflation, the use of

the Extended Kaiman smoother, and the use of attribute data.

The results from this research have shown that the PMHT algorithm is a viable

player in the data association and tracking arena. It has been shown to outperform the

PDAF in all of the scenarios studied here. Furthermore, it has proven to be superior to

the MHT in low clutter densities, although it is not as good in the high clutter densities.

The PMHT has also shown that it can track a target through a minor turn. Even though it

will not track through a radical target maneuver, this is not a glaring weakness since most

algorithms require special processing to track a target through a turn, as was discussed in

Chapter V.

Presently, the algorithm's greatest shortcoming is in the area of initialization. The

requirement for five measurements to line up (N=5) is stringent, especially when the

probability of detection is less than one. Unfortunately, the PMHT algorithm has proven

to be quite sensitive to the initial estimates. In addition, the algorithm is also easily

51

modified to make use of attribute data. However, the current lOdB signal to noise ratio is

rather high, and probably is not obtainable in the underwater sonar world.

B. FURTHER RESEARCH

The PMHT algorithm has developed quickly since it was proposed by Streit and

Luginbuhl in 1995. However, there are still several areas in which improvements and

further research need to be addressed. Clearly, the initialization problem needs

development, particularly in de-sensitizing the algorithm to the initial estimates.

Another area for further research is the use of attribute data. The current use

offers some promise, but more probability research needs to be done with the Rayleigh

distribution in order to lower the lOdB signal to noise ratio. Furthermore, using attribute

data during initialization needs to be studied more.

The final area where more research is needed is the processing of the algorithm

during radical turns and maneuvers. This has been done successfully with other tracking

algorithms, but actual simulations with the PMHT algorithm in linking tracks together

would be useful. Investigation of the requirements necessary for the new estimates after

the turn would be important.

52

APPENDIX. MATLAB CODE

This appendix contains the code which was used in Matlab 4.2c1 to simulate the

PMHT algorithm. The first set of code is for the two crossing target scenario. The

second set of code is for a straight track with attribute data. For the other scenarios, slight

modifications were made to either of these programs.

Crossing Tracks

%Probabilistic Multi-Hypothesis Tracking (version 36)
% thesis by Capt. Darin T. Dunham, USMC
% advisor: Prof. R. Gary Hutchins, NPS
%
% two tracks with clutter—
% first two meas are one std error,
% the other meas are uniform clutter.
%
% Uses clutter tracking model.
%
% Tracks in Tstep scan increments.
%
% Uses attribute data for each measurement NOT IMPLEMENTED
% which is a random Rayleigh distribution.
%
% Tracks cross.
%
% Uses first 5 points to initialize.
%
% Uses an Extended Kaiman instead of debiased eqns.
%
% Computes the mean track to show bias of second track.
%

1 Matlab® copyright© 1984-94 The Math Works, Inc., All Rights Reserved, Version 4.2c, Nov. 23, 1994.
The Math Works, Inc., 24 Prime Park Way, Natick, MA 01760.

53

clear
tic

%Constants
M=3;
N=5;
Nt=2;
Nc=10;
T=30;
Tstep=5;
dt=4;
1=100;
sr=100;
sth=pi/60;
s=l;
sc=l;
q=l:
mawi =308.66667;
maxv2=308.66667;
thr=10.5966;
stop=le-6;
J=500:

%three models, two track, one clutter
%number of points used to initialize
%number of tracks
%number of clutter points
%number of scans
%algorithm increment step size (change cwt)
%in minutes
%max number of iterations
%std for range
%std for bearing
%std for attribute on a true target
%std for attribute on clutter
%Q coefficient
%max allowable initial velocity for track 1 (10 knots)
%max allowable initial velocity for track 2(10 knots)
%threshold for 3 std
%convergence stopping parameter
%number of loops thru the simulation

%Constant vectors
c\vt=le-10*[le-2 le-2 1111]; %clutter model weight

%Initiation for actual track (meters)
Xlinit=[30200, 92.6, 30400, -123.46667]';
X2init=[30200, 92.6, 16078, 123.46667]';
Yl=zeros(4,T);
Y2=zeros(4,T);
Yl(:.l)=Xlinit;
Y2(:,l)=X2init;
Q=q*[(dtA3)/3 (dtA2)/2 0 0; (dtA2)/2 dt 0 0;

0 0 (dtA3)/3 (dtA2)/2; 0 0 (dtA2)/2 dt];
R=[srA2 0; 0 sthA2];
A=[0 1 0 0; 000 0; 000 1:000 0];
C=[l 0 00; 00 1 0];
Phi=eye(4) + A*dt;
invPhi=eye(4) - A*dt;
fort=l:T-l,

Yl(:,t+l)=Phi*Yl(:,t);
Y2(:,t+l)=Phi*Y2(:,t);

54

end
Ylpol=xy2polar(C*Yl);
Y2pol=xy2polar(C*Y2);

%Initialize error vectors
errm=zeros(l,T);
erre=zeros(l,T);
errm2=zeros(l ,T);
erre2=zeros(l,T);
countl=0;
count2=0;

%initialize mean estimated track vectors
Xlm=zeros(4,T);
X2m=zeros(4,T);

forj=l:J,

j

%Initialize tracker
pl=0.2*ones(l,T); %pl(t)-prob that target 1 has a meas in time t
p2=0.2*ones(l,T);
p3=1.0*ones(l,T);

%Generate range and bearing measurements
Zlpol=Ylpol + sqrt(R)*randn(2,T);
Z2pol=Y2pol + sqrt(R)*randn(2,T);

%Convert measurements to cartesian using Debiased Eqns.
mu=l - (exp(-sthA2) - exp(-(sthA2)/2));
Zl=(mu*eye(2))*polar2xy(Zlpol);
Z2=(mu*eye(2))*polar2xy(Z2pol);
Rs=[convert(Zlpol,sr,sth); convert(Z2pol,sr,sth)];

%Generate attribute data for targets
Z=[Zlpol; raylrnd(s,l,T); Z2pol; raylrnd(s,l,T)];

%Generate clutter measurements
form=l:Nc,

Zipol=xy2polar([1.5e4*rand(l,T)+2.8e4;2e4*rand(l,T)+1.5e4]);
Z=[Z; Zipol; raylrnd(sc,l,T)];

end

55

%Build Zbar
Zbarl=Z(l,:);
Zbar2=Z(2,:);
forv=4:3:3*(Nt+Nc),

Zbarl=[Zbarl;Z(v,:)];
Zbar2=[Zbar2;Z(v+l,:)];

end

%InitializeXl and X2
Xl=zeros(4,T);
F=[C; C*Phi; C*(PhiA2); C*(PhiA3); C*(PhiA4)];
Rl=form(Rs(l:3,l));
R2=form(Rs(1:3,2));
R3=form(Rs(1:3,3));
R4=form(Rs(1:3,4)):
R5=form(Rs(l:3,5));
Sig=[Rl zeros(2.8); zeros(2,2) R2 zeros(2,6);

zeros(2.4) R3 zeros(2,4); zeros(2,6) R4 zeros(2,2); zeros(2,8) R5];
invSig=inv(Sig);
K=inv(F'*invSig*F)*F'*invSig;
Zbar=[Zl(:.l): Zl(:,2): Zl(:,3); Zl(:,4); Zl(:,5)];
Xl(:.l)=K*Zbar;
Pvl(:.2)=reshape((K*Sig*K'),16,l);

X2=zeros(4,T);
Rl=form(Rs(4:6,l));
R2=form(Rs(4:6,2));
R3=form(Rs(4:6,3));
R4=form(Rs(4:6,4)):
R5=form(Rs(4:6,5)):
Sig=[Rl zeros(2.8); zeros(2,2) R2 zeros(2,6);

zeros(2,4) R3 zeros(2,4); zeros(2,6) R4 zeros(2,2); zeros(2,8) R5];
invSig=inv(Sig);
K=inv(F,*invSig*F)*F*invSie;
Zbar=[Z2(:.l): Z2(:,2); Z2(:,3)"; Z2(:,4); Z2(:.5)];
X2(:.l)=K*Zbar;
Pv2(:,2)=reshape((K*Sig*K'), 16,1);

%Limit initial velocity
initvell=sqrt(Xl(2,l)A2 + X1(4,1)A2);
initvel2=sqrt(X2(2,l)A2 + X2(4,1)A2);
vfactorl=initvell/maxvl;

56

vfactor2=initvel2/maxv2;
ifvfactorl>l,

Xl(2,l)=Xl(2,l)/vfactorl;
Xl(4,l)=Xl(4,l)/vfactorl;

end
if vfactor2>l,

X2(2,1)=X2(2,1)/vfactor2;
X2(4,1)=X2(4,1)/vfactor2;

end

%Predict initial estimate for first five points
for t=2:5,

Xl(:,t)=Phi*Xl(:,t-l);
X2(:,t)=Phi*X2(:,t-l);
Pvl(:,2*t)=reshape((Phi*formP(Pvl(:,2*(t-l)))*Phi' + Q),16,l);
Pv2(:,2*t)=reshape((Phi*formP(Pv2(:,2*(t-l)))*Phi' + Q),16,l);

end
U1=X1(:,1:5);
U2=X2(:,1:5);

for Ti=5:Tstep:T,

%Begin iterations
fori=l:I,

%store last target meas prob
plp=pl;
p2p=p2;
p3p=p3;

fort=l:Ti,
n(t)=Nt+Nc;

%compute weights
forr=l:n(t),

zt-Z((3*r-2):(3*r-l),t)-xy2polar(C*Xl(:,t));
Ck=Cekf(Xl(:,t));
Sig=Ck*reshape(Pvl(:,2*t),4,4)*Ck' + R;
den=2*pi* sqrt(det(Sig));
wl(r,t)=exp(-0.5*zt'*inv(Sig)*zt)/den;
ifzt'*inv(Sig)*zt>thr,

wl(r,t)=le-20;

57

end

zt=Z((3*r-2):(3*r-l),t)-xy2polar(C*X2(:,t));
Ck=Cekf(X2(:,t));
Sig=Ck*reshape(Pv2(:,2*t),4,4)*Ck' + R;
den=2*pi*sqrt(det(Sig));
w2(r,t)=exp(-0.5*zt'*inv(Sig)*zt)/den;
ifzt'*inv(Sig)*zt>thr,

w2(r?t)=le-20;
end

w3(r,t)=cwt(Ti/Tstep);
suml =(p 1 (t)* wl (r,t)+p2(t)* w2(r,t)+p3(t)*w3(r,t));
wl(r,t)=wl(r,t)/suml;
w2(rrt)=w2(r,t)/suml;
w3(r.t)=w3(r,t)/suml;

end

%compute mean meas weight for target m at time t
wl m(t)=(l /n(t))*sum(wl (:"t));
w2m(t)=(l/n(t))*sum(w2(:,t));
w3m(t)=(l/n(t))*sum(w3(:,t));

%update target meas prob
pl(t)=wlm(t)*pl(t);
p2(t)=\v2m(t)*p2(t);
p3(t)=w3m(t)*p3(t);

%compute target meas centroid
Wl=wl(:,t)/(n(t)*wlm(t));
W2=w2(:,t)/(n(t)*w2m(t));
Zlhat(:.t)=[Wl'*Zbarl(:,t);Wl,*Zbar2(:,t)];
Z2hat(:!t)=[W2'*Zbarl(:,t); W2'*Zbar2(:,t)];

end

%run Extended Kaiman smoother
ylhat(:fl)=Xl(:,l):
y2hat(:;l)=X2(:,l);

%forward recursion
fort=l:Ti-l?

Pt=Phi*reshape(Pvl(:,2*t),4,4)*Phi' + Q;

58

Pvl(:,2*t+l)=Pt(:);
ylhat(:,t+l)=Phi*ylhat(:,t);
k=n(t+l)*pl(t+l);
Ck=Cekf(ylhat(:,t+l));
G=k*Pt*Ck'*inv(k*Ck*Pt*Ck' + R);
Pvl(:,2*t+2)=reshape((Pt-G*Ck*Pt),16,l);
ylhat(:,t+l)=ylhat(:,t+l)+G*(Zlhat(:,t+l)-xy2polar(C*ylhat(:,t+l)));

Pt=Phi*reshape(Pv2(:,2*t),4,4)*Phi' + Q;
Pv2(:,2*t+l)=Pt(:);
y2hat(:,t+l)=Phi*y2hat(:,t);
k=n(t+l)*p2(t+l);
Ck=Cekf(y2hat(:,t+l));
G=k*Pt*Ck'*inv(k*Ck*Pt*Ck' + R);
Pv2(:,2*t+2)=reshape((Pt-G*Ck*Pt),16,l);
y2hat(:,t+l)=y2hat(:,t+l)+G*(Z2hat(:,t+l)-xy2polar(C*y2hat(:,t+l)));

end
Xl(:,Ti)=ylhat(:,Ti);
X2(:,Ti)=y2hat(:,Ti);

%backward recursion
fort=Ti-l:-l:l,

Ptt=reshape(Pvl (:,2*t),4,4);
invPt=inv(reshape(Pvl (:,2*t+l),4,4));
Xl(:,t)=ylhat(:,t)+Ptt*Phi'*invPt*(Xl(:,t+l)-Phi*ylhat(:,t));

Ptt=reshape(Pv2(:,2*t),4,4);
invPt=inv(reshape(Pv2(:,2*t+l),4,4));
X2(:,t)=y2hat(:,t)+Ptt*Phi'*invPt*(X2(:,t+l)-Phi*y2hat(:,t));

end

%check for convergence
diff=sum(abs(pl-plp))+sum(abs(p2-p2p))+sum(abs(p3-p3p));
if diff<stop,

break
end

end
i

%plot track output
figure(l)
plot(Yl(l,l:Ti),Yl(3,l:Ti),Xl(l,l:Ti),Xl(3,l:Ti),Y2(l,l:Ti),.

59

Y2(3,1 :Ti),X2(1,1 :Ti),X2(3,1 :Ti))
axis('equal'), title('Tracking Algorithm Output')
xlabel('x (meters)'), ylabel('y (meters)')

%Predict for next Tstep points if necessary
ifTi<T.

mid=floor(Ti/2);
initvell=sqrt(Xl(2;mid)A2 + Xl(4,mid)A2);
initvel2=sqrt(X2(2;mid)A2 + X2(4,mid)A2);
vfactorl=initveIl/maxvl;
vfactor2=init\'el2/maxv2;
if vfactorl>l,

X1 (2,mid)=X 1 (2,mid)/vfactor 1;
Xl(4,mid)=Xl(4,mid)/vfactorl;

end
if vfactor2>l,

X2(2,mid)=X2(2?mid)/vfactor2;
X2(4;mid)=X2(4,mid)/vfactor2;

end
for t=mid+l :Ti+Tstep,

Xl(:,t)=Phi*Xl(:,t-l);
Pvl(:;2*t)=reshape((Phi*reshape(Pvl(:,2*(t-l)),4,4)*Phi'+Q),16,l);
X2(:.t)=Phi*X2(:,t-l);
Pv2(:f2*t)=reshape((Phi*reshape(Pv2(:,2*(t-l)),4,4)*Phi'+Q),16?l);

end
fort=mid-l:-l:l,

Xl(:?t)=invPhi*Xl(::t+l);
X2(:.t)=invPhi*X2(:,t+l);

end
end

end

%update measurement & estimate errors for track 1
errx=Yl(l.:)-Zl(l.:);
erry=Yl(3,:)-Zl(2,:);
enm=sqrt(errx.A2 + erry.A2)./J + errtn;
errx=Yl(L:)-Xl(l,:);
ern-=Yl(3,:)-Xl(3,:):
errej=sqrt(errx.A2 + erry.A2);
erre=errej./J + erre;
ifmax(errej)>2000,

count l=count 1+1:

60

end

%update measurement & estimate errors for track 2
errx=Y2(l,:)-Z2(l,:);
erry=Y2(3,:)-Z2(2,:);
errm2=sqrt(errx.A2 + erry.A2)./J + errm2;
errx=Y2(l,:)-X2(l,:);
erry=Y2(3,:)-X2(3,:);
errej=sqrt(errx.A2 + erry.A2);
erre2=errej./J + erre2;
if max(errej) > 2000,

count2=count2+l;
end

%update mean estimated tracks
Xlm=Xlm + Xl./J;
X2m=X2m + X2./J;

end

%plot errors
figure(2)
load kserror
plot(l :T,errm,l :T,erre,l :T,errm2,l :T,erre2,l :T,errl(l :T),1 :T,err2(l :T))
title('Measurement Error & Estimate Error, over 100 runs')
xlabel('time'), ylabel('distance (m)')

figure(3)
plot(Yl(l,l:T),Yl(3,l:T),Xlm(l,l:T),Xlm(3,l:T),Y2(l,l:T),...
Y2(3,1 :T),X2m(1,1 :T),X2m(3,1 :T))
axis('equal'), title('Tracking Algorithm Output')
xlabel('x (meters)'), ylabel('y (meters)')

time=toc/60;
[time count 1 count2]

Attribute Data

%Probabilistic Multi-Hypothesis Tracking (version 35)
% thesis by Capt. Darin T. Dunham, USMC

61

0/ 70 advisor: Prof. R. Gary Hutchins, NPS

%
%

0' 70

0/ 70

%
%
0/ 70

0/ 70

%

one track with clutter-
first meas is one std error,
the other meas are uniform clutter.

Uses clutter tracking model.

Tracks in Tstep scan increments.

Uses attribute data for each measurement
which is a random Rayleigh distribution.

Uses first 5 points to initialize.

Uses an Extended Kaiman instead of debiased eqns.

%clear
tic

%Constants
M=2:
N=5:
Nt=l:
Nc=20:
T=30;
Tstep=5;
dt=4;
1=100;
sr=100;
sth=pi/60;
%s=sqrt(10);
sc=l:

q=i;'
maxv=308.66667;
thr=10.5966:
stop=le-8;
J=500:

%two models
%number of points used to initialize
%number of tracks
%number of clutter points
%number of scans
%algorithm increment step size
%in minutes
%max number of iterations
%std for range
%std for bearing
%std for attribute on a true target
%std for attribute on clutter
%Q coefficient
%max allowable predict velocity (10 knots)
%threshold for 3 std
%convergence value for Pi
%number of loops thru the simulation

%Constant vectors
cwt=le-10*[le-2 le-2 1111]; %clutter model weicht

62

%initiation for actual track (meters)
Xlinit=[30200, 92.6, 30400, -123.46667]';
%Xlinit=[30200, 92.6, 16078, 123.46667]';
Yl=zeros(4,T);
Yl(:,l)=Xlinit;
C=[l 0 0 0; 0 0 1 0];
Q=q*[(dtA3)/3 (dtA2)/2 0 0; (dtA2)/2 dt 0 0;

0 0 (dtA3)/3 (dtA2)/2; 0 0 (dtA2)/2 dt];
R=[srA2 0; 0 sthA2];
A=[0 100;0000;000 1;0000];
Phi=eye(4) + A*dt;
invPhi=eye(4) - A*dt;
fort=l:T-l,

Yl(:,t+l)=Phi*Yl(:,t);
end
Ylpol=xy2polar(C*Yl);
errm=zeros(l,T);
erre=zeros(l,T);
count=0;

%Loop through simulation J times***************************************
forj=l:J,

j

%Initialize tracker
pl=0.2*ones(l,T); %pl(t)-prob that tar 1 has a meas in time t
p2=1.0*ones(l,T);

%Generate range and bearing measurements
Zlpol=Ylpol + sqrt(R)*randn(2,T);

%Convert measurements to cartesian using Debiased Eqns.
mu=l - (exp(-sthA2) - exp(-(sthA2)/2));
Zl=(mu*eye(2))*(polar2xy(Zlpol));
Rs=convert(Z 1 pol,sr, sth);

%Generate attribute data for target & measurement covariance
Z=[Zlpol; raylrnd(s,l,T)];

%Generate clutter measurements
form=l:Nc,

Zipol=xy2polar([l.5e4*rand(l,T)+2.8e4; 2e4*rand(l,T)+1.5e4]);
Z=[Z; Zipol; raylrnd(sc,l,T)];

63

end

%Build Zbar
Zbarl=Z(l,:):
Zbar2=Z(2?:);
forv=4:3:3*(Nt+Nc),

Zbarl=[Zbarl;Z(v,:)];
Zbar2=[Zbar2;Z(v+l,:)];

end

Reinitialize X
Xl=zeros(4,T);
F=[C; C*Phi; C*(PhiA2); C*(PhiA3); C*(PhiA4)];
Rl=form(Rs(:,!));
R2=form(Rs(:.2));
R3=form(Rs(:.3));
R4=form(Rs(:?4));
R5=form(Rs(:?5));
Sig=[Rl zeros(2?8); zeros(2,2) R2 zeros(2,6);

zeros(2,4) R3 zeros(2,4); zeros(2,6) R4 zeros(2,2); zeros(2,8) R5];
invSig=inv(Sig);
K=inv(F'*invSig*F)*F'*invSig;
Zbar=[Zl(:.l); Zl(:,2); Zl(:,3); Zl(:,4); Zl(:,5)];
Xl(:.l)=K*Zbar;
Pv(:f2)=reshape((K*Sig*K'),16sl);

%Limit initial velocity
initvel=sqrt(Xl(2;l)

A2 + X1(4,1)A2);
vfactor=initvel/maxv;
if vfactor>l,

Xl(2.1)=Xl(2.1)/vfactor;
Xl(4,l)=Xl(4,l)/vfactor;

end

%Predict initial estimate for first five points
fort=2:5.

Xl(:rt)=Phi*Xl(:,t-l);
Pv(:,2*t)=reshape((Phi*formP(Pv(:,2*(t-l)))*Phi' + Q),16,l);

end
Ü1=X1(:.1:5);

%Track in Tstep scan increments*************************************
for Ti=5:Tstep:T.

64

%Begin iterations
fori=l:I,

%store last target meas prob
plp=pl;
p2p=p2;

fort=l:Ti,
n(t)=Nt+Nc;

%compute weights
forr=l:n(t),

zt=Z((3*r-2):(3*r-l),t)-xy2polar(C*Xl(:,t));
Ck=Cekf(Xl(:,t));
Sig=Ck*reshape(Pv(:,2*t),4,4)*Ck' + R;
den=2*pi*sqrt(det(Sig));
wl(r,t)=raylpdf(Z(3*r,t),s)*exp(-0.5*zt'*inv(Sig)*zt)/den;
ifzt'*inv(Sig)*zt>thr,

wl(r,t)=le-20;
end
w2(r,t)=raylpdf(Z(3*r,t),sc)*cwt(Ti/Tstep);
suml =(p 1 (t)* wl (r,t)+p2(t)* w2(r,t));
wl (r,t)=wl (r,t)/suml;
w2(r,t)=w2(r,t)/suml;

end

%compute mean meas weight for target m at time t
wlm(t)=(l/n(t))*sum(wl(:,t));
w2m(t)=(l/n(t))*sum(w2(:,t));

%update target meas prob
pl(t)=wlm(t)*pl(t);
p2(t)=w2m(t)*p2(t);

%compute target meas centroid
W=wl(:,t)/(n(t)*wlm(t));
Zhat(:,t)=[W'*Zbarl(:,t);W'*Zbar2(:,t)];

end

%run Extended Kaiman smoother
yhat(:,l)=Xl(:,l);

65

%for\vard recursion
fort=l:Ti-l,

Pt=Phi*reshape(Pv(:,2*t),4,4)*Phi' + Q;
Pv(:,2*t+l)=Pt(:);
yhat(:.t+l)=Phi*yhat(:,t);
k=n(t+l)*pl(t+l);
Ck=Cekf(yhat(:,t+l));
G=k*Pt*Ck'*inv(k*Ck*Pt*Ck' + R);
Pv(:,2*t+2)=reshape((Pt-G*Ck*Pt),16,l);
yhat(:,t+l)=>'hat(:,t+l)+G*(Zhat(:,t+l)-xy2polar(C*yhat(:,t+l)));

end
Xl(:,Ti)=yhat(:,Ti);

%backward recursion
fort=Ti-l:-l:l,

Ptt=reshape(Pv(:,2*t).4,4);
invPt=inv(reshape(Pv(:,2*t+l),4,4));
Xl(:;t)=yhat(:rt)+Ptt+Phi'*invPt*(Xl(:,t+l)-Phi*yhat(:,t));

end

%check for convergence
diff=sum(abs(p 1 -p 1 p))+sum(abs(p2-p2p));
if diff < stop,

break
end

end
U2=Xl(:.l:Ti);
i

%plot track output
figure(l)
plot(Yl(l,l:Ti),Yl(3,l:Ti)}Xl(l,l:Ti),Xl(3,l:Ti))
title('Tracking Algorithm Output')
xlabel('x (meters)'), ylabel('y (meters)')

%Predict for next five points if necessary
ifTi<T,

mid=floor(Ti/2);
initvel=sqrt(Xl(2,mid)A2 + Xl(4,mid)A2);
vfactor=initvel/maxv;
if vfactor>l.

66

X1 (2,mid)=X 1 (2,mid)/vfactor;
X1 (4,mid)=X 1 (4,mid)/vfactor;

end
for t=mid+l :Ti+Tstep,

Xl(:,t)=Phi*Xl(:,t-l);
Pv(:,2*t)=reshape((Phi*reshape(Pv(:,2*(t-l)),4,4)*Phi' + Q),16,l);

end
fort=mid-l:-l:l,

Xl(:,t)=invPhi*Xl(:,t+l);
end

end

end

errx=Yl(l,:)-Zl(l,:);
erry=Yl(3,:)-Zl(2,:);
errm=sqrt(errx.A2 + erry.A2)./J + errm;
errx=Yl(l,:)-Xl(l,:);
eny=Yl(3,:)-Xl(3,:);
errej=sqrt(errx.A2 + erry.A2);
erre=errej./J + erre;
ifmax(errej)>2000,

count=count+l;
end

end
%Fnd J times IQQTI***

%plot errors
figure(2)
load kserror
plot(l :T,erre,l :T,errl(l :T),1 :T,err2(l :T))
title('Measurement Error & Estimate Error, over 100 runs')
xlabel('time'), ylabel('distance (m)')

vel=sqrt(Ul(2,l)A2 + U1(4,1)A2);
anglediff=(180/pi)*(atan2(Ul(4,l),Ul(2Jl))-atan2(Yl(4,l),Yl(2,l)));
time=toc/60;
[vel anglediff time count]

67

68

LIST OF REFERENCES

[1] Streit, Roy L. and Luginbuhl, Todd E., Probabilistic Multi-Hypothesis Tracking,
NUWC-NPT Technical Report 10,428, 15 February 1995.

[2] Hutchins, Robert G. and Dunham, Darin T., "Evaluation of a Probabilistic
Multihypothesis Tracking Algorithm in Cluttered Environments," Proceedings
from The Thirtieth Asilomar Conference on Signals, Systems, and Computers,
November 1996.

[3] Lerro, Don and Bar-Shalom, Yaakov, "Tracking with Debiased Consistent
Converted Measurements Versus EKF," IEEE Transactions on Aerospace and
Electronic Systems, Vol. 29, No. 3, July 1993.

[4] Bar-Shalom, Yaakov and Li, Xiao-Rong, Multitarget-Multisensor Tracking:
Principles and Techniques, Yaakov Bar-Shalom, Storrs, CT, 1995.

[5] Blackman, Samuel S., Multiple-Target Tracking with Radar Applications, Artech
House, Norwood, MA, 1986.

69

70

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Director, Training and Education
MCCDC, Code C46
1019 Elliot Road
Quantico,VA 22134-5027

4. Director, Marine Corps Research Center
MCCDC, Code C40RC
2040 Broadway Street
Quantico,VA 22134-5107

5. Director, Studies and Analysis Division
MCCDC, Code C45
300 Russell Road
Quantico,VA 22134-5130

6. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

7. Professor Robert G. Hutchins, Code EC/Hu
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

8. Professor Harold A. Titus, Code EC/Ts
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

71

9. Dr. Michael Shields, Code EC/SI
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

10. Captain Darin T. Dunham
250 Apple Blossom Road
Pataskala, OH 43062-9115

11. Dr. Roy L. Streit, Code 2214
Naval Undersea Warfare Center
Newport RI 02841-5047

72

